FLUORINATION OF PERFLUOROALKYLSULFENYL CHLORIDES, PERFLUORODIALKYL DISULFIDES AND PERFLUORODIALKYL SULFIDES WITH CHLORINE MONOFLUORIDE

TAKASHI ABE* AND JEAN'NE M. SHREEVE**

Department of Chemistry, University of Idaho, Moscow, Idaho 83843 (U.S.A.) (Received November 10, 1972)

SUMMARY

In reactions with perfluoroalkylsulfenyl chlorides (R_tSCl ; $R_t = CF_3$, C_2F_5 , n- C_3F_7 , n- C_4F_9) and perfluoroalkyl disulfides (R_tSSR_t' ; $R_t = R_t' = CF_3$, $R_t = CF_3$, $R_t' = C_2F_5$) at 25°, chlorine monofluoride acts primarily as a chlorinating and fluorinating reagent to give the corresponding perfluoroalkylsulfur chloride tetrafluorides, R_tSF_4Cl , in good yields. However, small amounts of perfluoro-alkylsulfur pentafluorides, R_tSF_5 , are also obtained. A mixture of the *cis* and *trans* isomers of bis(trifluoromethyl)sulfur tetrafluoride and of trifluoromethyl pentafluoroethylsulfur tetrafluoride has been formed by the reaction of the corresponding bis(perfluoroalkyl) sulfides and chlorine monofluoride. The new perfluoroalkyl-sulfur chloride tetrafluorides are colorless, unpleasant smelling liquids. The infrared, mass and ¹⁹F NMR spectral data, as well as thermodynamic and elementary analysis data, are given for the new compounds.

INTRODUCTION

In a recent study¹ in which the reaction of perfluorotetramethylene sulfide with chlorine monofluoride was investigated, the corresponding perfluorotetramethylenesulfur tetrafluoride as well as perfluorotetramethylenesulfur difluoride were formed depending upon the reaction conditions, showing the versatile oxidizing ability of chlorine monofluoride. Further syntheses of such perfluorocyclic derivatives of sulfur hexafluoride as perfluoro-1,3-dithietane octafluoride and perfluoro-1,4-dithiane octafluoride were similarly achieved by the oxidative

^{*} Government Industrial Research Institute, Nagoya, Japan.

^{**} Alfred P. Sloan Foundation Fellow, 1970-72.

fluorination of the respective perfluorocyclic sulfide. By using a reaction temperature of -78° , chlorine monofluoride fluorinated bis(perfluoroalkyl) sulfides to bis(perfluoroalkyl)sulfur difluorides only (no tetrafluoride was formed) in high yields². It should be noted that no evidence was found for chlorination having occurred with either the perfluorocyclic or bis(perfluoroalkyl) sulfides contrary to our present report.

While trifluoromethylsulfur chloride tetrafluoride has been prepared by the chlorination of trifluoromethylsulfur trifluoride with chlorine in the presence of CsF at 25° , the percentage yield and full details of characterization have not been published ³.

In this work, we wish to report the reaction of chlorine monofluoride as a chlorinating and fluorinating or a fluorinating agent in synthesizing bis(perfluoro-alkyl)sulfur chloride tetrafluorides from the corresponding perfluoroalkylsulfenyl chlorides and bis(perfluoroalkyl) sulfides. Also, for the first time, it has been possible to form both the *cis* and *trans* isomers of the bis(perfluoroalkyl)sulfur tetrafluorides ($R_tSF_4R_t'$; $R_t = R_t' = CF_3$, and $R_t = CF_3$, $R_t' = C_2F_5$) from the respective bis(perfluoroalkyl) sulfides.

RESULTS AND DISCUSSION

At ambient temperature, the reaction of sulfur dichloride and chlorine monofluoride resulted only in the formation of sulfur tetrafluoride, with no evidence of compounds such as SF₄Cl₂. However, perfluoroalkylsulfenyl chloride, R_fSCl, reacted easily with chlorine monofluoride to give stable perfluoroalkylsulfur chloride tetrafluorides in yields ranging from 53-58%. Small amounts of the corresponding perfluoroalkylsulfur pentafluorides were found among the products. The reaction of bis(trifluoromethyl) disulfide with chlorine monofluoride at 25° also resulted primarily in the formation of trifluoromethylsulfur chloride tetrafluoride together with a trace of trifluoromethylsulfur pentafluoride. No CF₃SF₄SF₄CF₃* was found which, considering the weak S-S bond (S-S stretching frequency assigned to a band at 536 cm^{-1} in the Raman spectrum) in CF_3SSCF_3 , is not surprising. When bis(pentafluoroethyl) disulfide was fluorinated, an increase in the amount of the pentafluoroethylsulfur pentafluoride by-product (17.1%) was accompanied by a concomitant decrease in the yield of pentafluoroethylsulfur chloride tetrafluoride (25.4%). These new perfluoroalkylsulfur chloride tetrafluorides, R_fSF_4Cl , $(R_f = C_2F_5, n-C_3F_7, n-C_4F_9)$ are colorless liquids which are stable at 25°, reactive towards mercury and which have boiling points 30-40° higher than those of their R_fSF₅ analogues.

•

^{*} This compound was reportedly synthesized by the electrochemical fluorination of S-methylthioglycolic acid chloride, but not of dimethyl disulfide; J. A. YOUNG AND R. D. DRESDNER, J. Org. Chem., 24 (1959) 1021.

While the fluorination of bis(perfluoroalkyl) sulfides with ClF at low temperature² gave the corresponding bis(perfluoroalkyl)sulfur difluorides in good yield, when the reaction was carried out at 25° for 12 h with a four-fold molar excess of ClF, hexavalent sulfur was obtained in the respective bis(perfluoroalkyl)-sulfur tetrafluorides.

The mass spectra of the perfluoroalkylsulfur chloride tetrafluorides showed such characteristic ions as $R_tSF_2^+$, R_tSF^+ , R_tSCl^+ , R_tS^+ , SF_4Cl^+ , SF_4^+ , SF_3^+ , SF_2^+ and SF^+ (Table 2). The ¹⁹F NMR spectra of the perfluoroalkylsulfur chloride tetrafluorides and perfluoroalkylsulfur pentafluorides are shown in Table 4. The spectra of the R_tSF_4Cl compounds contained resonances in the expected regions and the chemical shifts of the equatorial fluorines bonded to the hexavalent sulfur lie in the range -102 to -111 MHz. These are shifted downfield from the analogous fluorines in R_tSF_5 probably due to the availability of empty d orbitals on the chlorine. As already reported for $CF_3SF_4Cl^3$, the highresolution ¹⁹F NMR spectrum of the $-SF_{4-}$ group of R_tSF_4Cl showed only a single well-resolved multiplet expected for only the *trans* isomer. The coupling constants of $-SF_{4-}$ of R_tSF_4Cl with the diffuoromethylene group [$J(SF_4-CF_2)$] decrease as the number of bonds separating the groups increases and show essentially the same magnitude as that found for R_tSF_5 .

While the *trans* forms of CF₃SF₄CF₃ and CF₃SF₄C₂F₅ have been obtained *via* the electrochemical fluorination of the appropriate dialkyl sulfides⁴⁻⁶, it has not been possible to prepare the *cis*-bis(perfluoroalkyl)sulfur tetrafluorides previously. Although we have not separated the isomeric mixtures, the ¹⁹F NMR spectra (CFCl₃ as internal reference) of both CF₃SF₄CF₃ and CF₃SF₄C₂F₅ clearly confirm the synthesis of the *cis* and *trans* isomers (Table 5). The A₂B₂X₆ and A₄X₆ systems are well resolved particularly for the less complicated CF₃SF₄CF₃ isomers. The CF₃ groups which are easily assigned to the *cis* or *trans* position are centered at φ 63.5 and φ 64.8. The former is close to a pentet arising from two partially overlapping triplets, J(CF-SF_{eq.}) = 17.0 Hz and J(CF-SF_{ax.}) = 17.7 Hz. While the latter is a pentet, J(CF-SF) = 22.9 Hz.

For the *cis* isomer, the sulfur-fluorine region with two sets of triplets of heptets centered at φ -12.3 and φ -49.6 arise from the chemically non-equivalent axial and equatorial S-F fluorines. The coupling interaction between SF_{ax}, and SF_{eq}, is 93.6 Hz which accounts for the two triplets and, because of this rather large value, it is possible to clearly resolve the heptets arising from CF-SF couplings, $J(CF-SF_{ax}) = 17.7$ Hz and $J(CF-SF_{eq}) = 17.0$ Hz.

In the case of the *trans* isomer, the sulfur-fluorines, now chemically equivalent, are centered at φ -18.6 and are split by the six equivalent carbon-fluorines into a heptet, J(CF-SF) = 22.9 Hz. Based on the relative areas of the S-F resonance peaks, the *cis:trans* ratio is about 1:1.6.

Trifluoromethyl pentafluoroethylsulfur tetrafluoride showed much more complex spectra, and the equatorial fluorines of the $-SF_4$ - group in the *cis* form

could not be detected partly because of its low concentration. By the integration of the trifluoromethyl group attached to hexavalent sulfur, the ratio of the *cis* to *trans* form is 1:1.9. The ¹⁹F NMR spectrum of this compound is being studied further. Although the aliphatic perfluoroalkylsulfur tetrafluorides which were obtained by the electrochemical fluorination of the corresponding dialkyl sulfide have been shown to have a *trans* configuration⁶ which is considered to be more stable thermodynamically, the perfluorocyclic derivatives of SF₆, such as perfluorotetramethylenesulfur tetrafluoride⁷, perfluorothioxane tetrafluoride⁶, perfluoro-1,3-dithictane octafluoride and perfluoro-1,4-thiane octafluoride¹ have a *cis* configuration.

The fluorination mechanism of chlorine monofluoride towards perfluoroalkyl sulfur compounds is not understood and our studies are continuing.

EXPERIMENTAL

Reagents

Trifluoromethylsulfenyl chloride was prepared by the methods described in the literature⁸. Perfluoroethylsulfenyl chloride, perfluoro-n-propylsulfenyl chloride and perfluoro-n-butylsulfenyl chloride were obtained by heating the corresponding bis(perfluoroalkyl) disulfide with Cl_2 at about 100°. Bis(perfluoroethyl) disulfide and bis(perfluoro-n-propyl) disulfide were prepared according to the literature from perfluoroethyl iodide, perfluoro-n-propyl iodide and sulfur, respectively⁹. Bis(perfluoro-n-butyl) disulfide was synthesized by the thermolysis of perfluorotetramethylenesulfur difluoride at 300°¹.

Photolysis of sulfenyl-carboxylic anhydrides $CF_3C(O)OSCF_3$ and $CF_3SOC(O)C_2F_5$ afforded the monosulfides CF_3SCF_3 and $CF_3SC_2F_5^2$, respectively, in essentially quantitative yields. All compounds which were to be fluorinated were purified by gas chromatography.

Chlorine monofluoride was purchased from Ozark-Mahoning Co..

Apparatus

A Monel Hoke cylinder (75 ml) with a stainless-steel valve was used for the fluorination reactions. A standard Pyrex vacuum line which was equipped with a Heise–Bourdon tube pressure gauge was used for handling the volatile liquids and gaseous materials.

Infrared spectra were taken using a Perkin–Elmer Model 457 infrared spectrometer with a 5 cm gas cell equipped with KBr windows. Spectra were calibrated against the known absorption bands in a polystyrene film. ¹⁹F NMR spectra were determined with a Varian Model HA-100 spectrometer operating at 94.1 MHz using Freon 11 as the internal standard. Mass spectra were obtained using a Hitachi Perkin–Elmer Model RMU 6E mass spectrometer. Elemental analyses were performed by Beller Mikroanalytisches Laboratorium, Göttingen, Germany.

Reaction of bis(perfluoro-n-butyl) disulfide with Cl₂

In a 200 ml Pyrex bulb fitted with a Teflon stopcock, bis(perfluoro-n-butyl) disulfide (0.85 g) and Cl₂ (6 mmole) were condensed, and the reaction took place at 100° over a period of 8 h. Separation of the reaction mixture by trap-to-trap condensation resulted in the collection of the clear yellow liquid perfluoro-n-butylsulfenyl chloride at -78° . Further purification by gas chromatography using a column composed of 15% Fluolube grease GR-90 on Chromosorb P afforded perfluoro-n-butylsulfenyl chloride in a yield of 64.8%. This compound was characterized by infrared, mass and NMR spectra and elementary analysis (Tables 2, 3, 4 and 6).

TABLE 1

summary of the reactions of perfluoroalkylsulfenyl chlorides, bis(perfluoroalkyl) disulfides and bis(perfluoroalkyl) sulfides with chlorine monofluoride at 25° for 10 h

Reactant (mmole)	ClF (mmole)	Products (% yield)
CF ₃ SCl (5.0)	25	$CF_{3}SF_{4}Cl$ (56.5); $CF_{3}SF_{3}$ (trace)
$C_2F_5SCl(3.5)$	15	$C_2F_5SF_4Cl$ (52.7); $C_2F_5SF_5$ (trace)
$n-C_{3}F_{7}SCl(5.5)$	25	n-C ₃ F ₇ SF ₄ Cl (54.0); n-C ₃ F ₇ SF ₅ (2.4)
$n-C_4F_9SCl(4.1)$	19	n-C ₄ F ₉ SF ₄ Cl (57.6); n-C ₄ F ₉ SF ₅ (5.2)
CF ₃ SSCF ₃ (5.2)	44	CF ₃ SF ₄ Cl (76.8); CF ₃ SF ₅ (trace)
$C_2F_5SSC_2F_5(7.5)$	68	C ₂ F ₅ SF ₄ Cl (25.4); C ₂ F ₅ SF ₅ (17.1)
$CF_{3}SC_{2}F_{5}$ (4.9)	23	$CF_3SF_4C_2F_5$ (12.6); $CF_3SF_2C_2F_5$ (9.6);
		CF_3SF_4Cl (13.4); $C_2F_5SF_4Cl$ (31.1)
CF ₃ SCF ₃ (4.7)	21	CF ₃ SF ₄ CF ₃ (42.8); CF ₃ SF ₄ Cl (24.8)

TABLE 2

MASS SPECTRA OF PERFLUOROALKYLSULFUR CHLORIDE TETRAFLUORIDES ^a

- $\begin{array}{c} {\rm CF_3SF_4Cl: 143\ SF_4Cl^{35+} (6.9),\ 139\ CF_3SF_2^+ (5.6),\ 120\ CF_3SF^+ (2.8),\ 108\ SF_4^+ (2.3),\ 105\ SF_2Cl^{35+} (8.2),\ 89\ SF_3^+ (45.8),\ 70\ SF_2^+ (30.6),\ 69\ CF_3^+,\ SCl^{37+} (100),\ 67\ SCl^{35+} (5.1),\ 63\ CFS^+ (2.3),\ 51\ SF^+ (10.1),\ 50\ CF_2^+ (4.5),\ 44\ SC^+ (25.5),\ 35\ Cl^{35+} (5.4)\ 32\ S^+ (8.3),\ 31\ CF^+ (6.0). \end{array}$
- $\begin{array}{l} C_2F_5SF_4Cl\colon 189\ C_2F_5SF_2^+\ (8.1),\ 170\ C_2F_5SF^+\ (1.3),\ 151\ C_2F_5S^+\ (0.9),\ 143\ SF_4Cl^{35+}\ (4.2),\\ 120\ CF_4S^+\ (2.8),\ 119\ C_2F_5^+\ (100.0),\ 105\ SF_2Cl^{35+}\ (9.2),\ 101\ CF_3S^+\ (5.7),\ 100\ C_2F_4^+\ (4.3),\\ 89\ SF_3^+\ (60.6),\ 70\ SF_2^+\ (23.8),\ 69\ CF_3^+,\ SCl^{37+}\ (96.0),\ 67\ SCl^{35+}\ (5.6),\ 63\ CFS^+\ (5.1),\\ 51\ SF^+\ (10.0),\ 50\ CF_2^+\ (9.1),\ 44\ SC^+\ (7.6),\ 35\ Cl^{35+}\ (4.4),\ 32\ S^+\ (17.2),\ 31\ CF^+\ (29.4). \end{array}$
- $\begin{array}{l} n\text{-}C_3F_7SF_4Cl: \ 239 \ C_3F_7SF_2^+ \ (2.9), \ 220 \ C_3F_7SF^+ \ (0.7), \ 201 \ C_3F_7S^+ \ (0.5), \ 169 \ C_3F_7^+ \ (40.3), \\ 143 \ SF_4Cl^{35+} \ (4.2), \ 119 \ C_2F_5^+ \ (7.1), \ 105 \ SF_2Cl^{35+} \ (5.5), \ 101 \ CF_3S^+ \ (3.1), \ 100 \ C_2F_4^+ \ (7.1), \\ 89 \ SF_3^+ \ (34.4), \ 70 \ SF_2^+ \ (11.3), \ 69 \ CF_3^+, \ SCl^{37+} \ (100.0), \ 67 \ SCl^{35+} \ (1.7), \ 63 \ CFS^+ \ (2.5), \\ 51 \ SF^+ \ (4.0), \ 50 \ CF_2^+ \ (3.6), \ 44 \ SC^+ \ (2.1), \ 35 \ S^{35+} \ (1.5), \ 32 \ S^+ \ (4.3), \ 31 \ CF^+ \ (12.6). \end{array}$
- $\begin{array}{l} n\text{-}C_4F_9\text{SF}_4\text{Cl} : 289\ C_4F_9\text{SF}_2^+\ (2.1),\ 286\ C_4F_9\text{SC}|^{35+}\ (0.5),\ 270\ C_4F_9\text{SF}^+\ (0.4),\ 251\ C_4F_9\text{S}^+\ (0.3), \\ 219\ C_4F_9^+\ (10.1),\ 169\ C_3F_7^+\ (1.1),\ 143\ \text{SF}_4\text{C}|^{35+}\ (2.4),\ 131\ C_3F_5^+\ (12.3),\ 119\ C_2F_5^+\ (8.3), \\ 105\ \text{SF}_2\text{C}|^{35+}\ (2.6),\ 101\ \text{CF}_3\text{S}^+\ (3.1),\ 100\ C_2F_4^+\ (7.2),\ 89\ \text{SF}_3^+\ (21.8),\ 82\ \text{CF}_2\text{S}^+\ (1.2), \\ 70\ \text{SF}_2^+\ (10.9),\ 69\ \text{CF}_3^+,\ \text{SC}|^{37+}\ (100.0),\ 67\ \text{SC}|^{35+}\ (2.5),\ 63\ \text{CFS}^+\ (2.4),\ 51\ \text{SF}^+\ (3.6), \\ 50\ \text{CF}_2^+\ (2.3),\ 44\ \text{SC}^+\ (2.2),\ 35\ \text{Cl}^{35+}\ (1.3),\ 32\ \text{S}^+\ (1.6),\ 31\ \text{CF}^+\ (8.6). \end{array}$

^a In addition to the fragments which contain ³⁵Cl, ions containing ³⁷Cl were observed essentially in a ratio of 3:1.

TABLE 3

INFRARED SPECTRA OF PERFLUOROALKYLSULFUR CHLORIDE TETRAFLUORIDES AND PERFLUORO-BUTYLSULFENYL CHLORIDE

- CF₃SF₄Cl: 1260 (vs), 1223 (w), 1166 (s), 1140–1120 (w), 872 (vs), 801–797 (s), 751 (w), 720 (w), 691 (vs), 656 (m), 487 (w).
- C₂F₅SF₄Cl: 1342 (m), 1258 (vs), 1234 (vs), 1162 (s), 998 (m), 872 (vs), 773 (m), 697 (vs), 652 (m), 541 (w).
- n-C₃F₇SF₄Cl: 1334 (s), 1300–1290 (m), 1270–1260 (vs), 1235–1220 (vs–s), 1160 (vs), 1110 (s), 1069 (w), 943 (w), 868 (vs), 762 (w), 700–688 (vs), 655 (m), 592 (ms), 540 (w), 483 (w).
- n-C₄F₉SF₄Cl: 1353 (m), 1288 (w), 1260–1253 (vs), 1232 (vs), 1200 (w), 1160 (s), 1133 (w), 1033 (w), 1017 (w), 872 (vs), 815 (w), 780 (w), 752 (w), 721–692 (w–vs), 652 (w), 628 (m), 538 (w), 482 (w).
- n-C₄F₉SCl: 1352 (m), 1253 (vs), 1222–1200 (s–w), 1152 (s), 1115 (m), 1040–980 (w), 890–820 (w), 805 (w), 755 (w), 739 (m), 700 (w), 560–530 (w).

TABLE 5

 $^{19}{\rm F}$ NMR spectra of cis- and trans-bis(trifluoromethyl)sulfur tetrafluoride and cis- and trans-trifluoromethyl pentafluoroethylsulfur tetrafluoride. (internal $\rm CCl_3F$ reference)

_	Chemical shift (MHz)					
Compound	CF ₃ S	CF ₃ C	CF ₂	SF _{ax.}	SF _{eq.}	Coupling constant (Hz)
trans-CF ₃ SF ₄ CF ₃	64.8				18.6	$J(CF_3-SF_{eq.}) = 22.9$
<i>cis</i> -CF₃SF₄CF₃	63.5			-12.3	49.6	$J(CF_{3}-SF_{ax,}) = 17.7$ $J(CF_{3}-SF_{eq,}) = 17.0$ $J(SF_{ax,}-SF_{eq,}) = 93.6$
trans-CF ₃ SF ₄ CF ₂ CF ₃	64.9	81.0	97.9		21.7	$J(CF_3-SF_{eq.}) = 23.1 J(CF_3S-CF_2) = 0.6 J(CF_3C-SF_{eq.}) = 8.9 J(CF_3C-CF_2) = 0.4 J(CF_2-SF_{eq.}) = 15.2$
cis-CF ₃ SF ₄ C ₂ F ₅ ^a	61.3	80.7	99.4	16.6	?	$J(SF_{ax}-SF_{eq}) = 93$

^a Analysis of this spectrum is under way.

¹⁹ F NMR SPECTR/	A OF PERFLI	UOROALKYL	SULFUR CH	ILORIDE TETI	RAFLUORIDE	S AND PERFLUOROALK	¹⁹ F NMR SPECTRA OF PERELUOROALKYLSULFUR CHLORIDE TETRAFLUORIDES AND PERFLUOROALKYLSULFUR PENTAFLUORIDES. (INTERNAL CCl ₃ F reference)
	Chemica	Chemical shift, (MHz)	Hz)				
Compound	CF ₃	α-CF ₂	β-CF ₂	γ-CF ₂	SF _{eq.}	SF _{ax} .	Coupling constant (Hz)
CF ₃ SF ₄ Cl	65.5 (67 3)a				—102.6 (107_1)a	1)a	$J(CF_{3}-SF_{eq}) = 22.4$
C2F5SF4CI	-(C.10) 81.1	98.8			-109.5	-11-	$J(CF_2-SF_{eq.}) = 14.3$ $J(CF_3-SF_{a.c}) = 8.8$
n-C ₃ F ₇ SF ₄ Cl	81.2	94.2	127.0		-110.5		
n-C4F9SF4Cl	81.4	93.4	123.1	125.6			$J(f_{1}-CF_{2}-SF_{eq}) = 13.3$ $J(CF_{3}-SF_{eq}) = 1.0$ $J(\gamma-CF_{2}-a-CF_{2}) = 18.0$ $J(a-CF_{2}-SF_{eq}) = 16.0$ $J(a-CF_{2}-SF_{eq}) = 16.0$
CF ₃ SF ₅	66.2				37.0	61.3	
C2F,SF,	81.5	99.8			43.1	62.5	
n-C ₃ F ₇ SF ₅	81.2	94.1	127.4		44.4		$J(a-CF_2-SF_{ax}) = 4.7$ $J(SF_{eq}-SF_{ax}) = 146$ $J(CF_3-a-CF_2) = 23.6$ $J(CF_3-SF_{eq}) = 2.0$
n-C4F9SF5	81.5	92.5	123.6	125.7	44.4		$J(\beta^{-}CF_{2}-SF_{eq}) = 13.4$ $J(SF_{eq}-SF_{ax}) = 145$ $J(CF_{3}-F_{2}-CF_{2}) = 10.7$ $J(CF_{3}-a-CF_{2}) = 2.6$ $J(\gamma^{-}CF_{2}-a-CF_{2}) = 18.0$ $J(SF_{eq}-SF_{ax}) = 144$

FLUORINATION OF PERFLUORODIALKYL COMPOUNDS

TABLE 4

^a Reported value in parentheses; see ref. 3.

9	
ABLE	
AB	
F	

ELEMENTAL ANALYSES AND THERMODYNAMIC DATA

[]						
(mmHg)	$\frac{X-Y/T(^{\circ}\mathbf{K})}{Y}$	1352	1497	1768	1940	1783
$\log P$	$\frac{X}{X}$	7.49	7.50	7.93	8.08	7.89
ΔS_{ν}	(e.u.)	21.1	21.2	23.1	23.8	22.9
ΔH_{ν}	(kcal mole ⁻¹)	6.18	6.85	8.09	8.88	8.16
B.p.	() C	20.1	50.7	76.8	100.0	83.0
	G		13.52 (13.52)	11.12 (11.36)	9.73 (9.80)	12.19 (12.39)
(%	Т	60.8 (62.6) ^b	65.6 (65.1)	67.2 (66.9)	68.4 (68.1)	59.4 (59.7)
Elemental analysis (%)	x		12.22 (12.19)	10.49 (10.24)	8.85 (8.83)	11.17 (11.17)
Elementa	C		8.99 (9.14)	11.38 (11.52)	13.14 (13.24)	16.62 (16.75)
		CF ₃ SF ₄ Cl ^a	C ₂ F ₅ SF ₄ CI	n-C ₃ F ₇ SF ₄ Cl	n-C4F ₉ SF ₄ Cl	n-C4F,SCI

^a Molecular weight; Observed 211, Calcd. 212.5. ^b Calculated values in parentheses. General procedure of the fluorination of the perfluoroalkylsulfenyl chlorides with ClF

A typical example is the case of the fluorination of trifluoromethylsulfenyl chloride. Trifluoromethylsulfenyl chloride (0.68 g) and a four-fold excess of ClF (25 mmole) were condensed in a 75 ml Monel Hoke cylinder, and the reaction was carried out at 25° for 10 h.

Fractional condensation was used to remove the unreacted CIF, Cl_2 and the small amounts of low boiling by-products, such as CF_4 , $CCIF_3$, SF_4 and CF_3SF_5 , using traps at -116, -131 and -183° . The trap at -116° contained a clear liquid which was slightly contaminated with Cl_2 . This was agitated in a small Pyrex tube which contained a small amount of 5A molecular sieves until the yellow color had disappeared. Further purification was conducted by gas chromatography using a column comprised of 20% Kel-F 3 oil on Chromosorb P. The yield of trifluoromethylsulfur chloride tetrafluoride was 56.5%.

The reaction conditions and yields used in the fluorinations of the other perfluoroalkylsulfenyl chlorides, including trifluoromethylsulfenyl chloride, are summarized in Table 1.

Fluorination of bis(perfluoroethyl) disulfide with ClF

Bis(perfluoroethyl) disulfide (1.5 g) was condensed in a Hoke cylinder followed by CIF in an excess of 1:8. After reacting at 25° for 10 h, the product mixture was condensed into a U-trap cooled at -196° , and trap-to-trap distillation was carried out using traps at -98, -116 and -196° . The first trap contained mainly C₂F₅SF₄Cl and C₂F₅SF₅. In the second trap, mainly C₂F₅SF₅ and a trace of Cl₂ were found. The lowest boiling compounds which collected in the trap at -196° were primarily Cl₂ and small amounts of C₂F₆, SF₄ and C₂F₅SF₅. The compounds in the first and second traps were subsequently separated by gas chromatography with a column of 15% Fluolube grease GR-90 on Chromosorb P. Thus, 1.0 g (25.4%) of C₂F₅SF₄Cl and 0.63 g (17.1%) of C₂F₅SF₅ were obtained.

Fluorination of trifluoromethyl pentafluoroethyl sulfide with ClF

A reaction mixture of 1.1 g of trifluoromethyl pentafluoroethyl sulfide and 23 mmole of CIF in a 75 ml Monel Hoke cylinder was held at 25° for 10 h. The product was subjected to fractional condensation using consecutive U-traps immersed in baths at -116, -131 and -183° . Low boiling compounds in the traps at -131 and -183° were CF₄, CCIF₃, SF₆ and Cl₂. Gas chromatographic separation of the liquid product which was collected at -116° employing a 6 mm \times 5.1 m copper column packed with 20% Kel-F 3 oil on Chromosorb P yielded the following compounds: CF₃SF₄Cl (0.10 g), CF₃SF₄C₂F₅ (0.18 g), CF₃SF₂C₂F₅ (0.17 g), C₂F₅SF₄Cl (0.40 g). The yield of CF₃SF₄C₂F₅ was 12.6%. Identification of these compounds was accomplished by infrared and ¹⁹F NMR spectra. Further attempts were not made to separate the *cis* and *trans* isomers of CF₃SF₄C₂F₅.

ACKNOWLEDGEMENTS

Fluorine research at the University of Idaho is supported by the Office of Naval Research and the National Science Foundation. We thank Dr. R. A. Porter and Mr. C. Srivanavit for the ¹⁹F NMR spectra and Mr. N. R. Zack for the mass spectra. T. A. is indebted to the Japanese Government for a Fellowship.

REFERENCES

- 1 T. ABE AND J. M. SHREEVE, J. Fluorine Chem., 3 (1973/74) 17.
- 2 D. T. SAUER AND J. M. SHREEVE, J. Fluorine Chem., 1 (1971) 1.
- 3 J. I. DARRAGH AND D. W. A. SHARP, Chem. Comm., (1969) 864.
- 4 A. F. CLIFFORD, H. K. EL-SHEMY, H. J. EMELÉUS AND R. N. HASZELDINE, J. Chem. Soc., (1953) 2372.
- 5 F. W. HOFFMANN, T. C. SIMMONS et al., J. Amer. Chem. Soc., 73 (1957) 3424.
- 6 N. MULLER, P. C. LAUTERBUR AND G. F. SVATOS, J. Amer. Chem. Soc., 79 (1957) 1043.
- 7 T. ABE, to be published.
- 8 C. W. TULLOCK AND D. D. COFFMAN, J. Org. Chem., 25 (1960) 2016.
- 9 W. J. MIDDLETON, U. S. Pat., 3,069,395, 1962; Chem. Abstr., 59 (1962) 1493h.